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Executive Summary

Finite Element Analysis of Reverberation Chambers

-h.

w

W

The primary motivating factor behind the initiation of this work was to provide a

deterministic means of establishing the validity of the statistical methods that are recommended

for the determination of fields that interact in an avionics system. The application of finite

element analysis to reverberation chambers is the initial step required to establish a reasonable

course of inquiry in this particularly data-intensive study. The use of computational

electromagnetics provides a high degree of control of the "experimental" parameters that can be

utilized in a simulation of reverberating structures. As the work evolved there were four primary

focus areas they are

w

w
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1. The eigenvalue problem for the source free problem

2. The development of a complex efficient eigensolver

3. The application of a source for the TE and TM fields for statistical characterization

4. The examination of shielding effectiveness in a reverberating environment

One early purpose of this work was to establish the utility of finite element techniques in

the development of an extended low frequency statistical model for reverberation phenomena. By

employing finite element techniques, structures of arbitrary complexity can be analyzed due to the

use of triangular shape functions in the spatial discretization. The effects of both frequency stirring

and mechanical stirring are presented. It is suggested that for the low frequency operation the

typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring

should be used. The results of the finite element analysis of the reverberation chamber illustrate

the potential utility of a 2D representation for enhancing the basic statistical characteristics of the

chamber when operating in a low frequency regime. The basic field statistics are verified for

frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an

"iii



effective frequency deviation. It can be suggested that a large frequency deviation as compared to

the operating frequency is required to obtain the desired field statistics. An advantage of

employing a numerical scheme such as finite elements to analyze reverberation chambers is that

the field values at virtually any point in the structure can be easily obtained without perturbing the

field as can occur when using an antenna to monitor the fields.

w
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Essential to the finite element solution of these problems is an effective numerical

procedure for solving large-scale, sparse systems of linear equations and generalized eigen-

equations. These solution phases typically represent the most costly steps of the analysis in terms

of computational resources. Subspace and Lanczos iterations have been developed, well

documented, and widely accepted as efficient methods for obtaining p-lowest eigen-pair solutions

of large-scale, practical engineering problems. The focus of this work is, however, to re-examine

these popular eigen-solution algorithms, with the viewpoints to incorporate recent developments

in vectorized sparse technologies in conjunctions with Subspace and Lanczos iterative algorithms

for computational electromagnetic enhancements. Basic generalized eigen-solution algorithms are

reviewed. Major computational tasks in subspace iteration and Lanczos algorithms have been

identified. Efficient sparse technologies have been developed, and fully utilized, in conjunction

with the basic Subspace iterations and Lanczos algorithms for efficient solutions of the

generalized eigen-equations. Numerical results from practical finite element models have clearly

indicated that the proposed "sparse" Subspace iterations and Lanczos algorithms have offered

substantial computational advantages over the traditional "skyline", or "variable bandwidth"

strategies. Both lumped and consistent mass formulation have been incorporated into our eigen-

solution package.

A two-dimensional finite element model for both the transverse electric (TE) and

transverse magnetic (TM) solutions inside a simulation reverberation chamber is presented. Tuner

effects on the modal structure and the resulting statistics of the field distribution have been

explored. It is demonstrated that the TE simulation reverberation chamber provides excellent

statistical and reverberation characteristics. The measures of reverberation characteristics

includes normalized standard deviation, the max-to-average ratio, the stirrer ratio, and the field

iv



uniformity. In addition the notion of "source" stirring is introduced wherein the fields that were

coupled into the non-complex geometry were shown to be statistically similar to those in the

complex environment. The idea of source stirring may shed light on the question of whether it is

absolutely necessary to stir in all regions for which a reverberation type test is being performed.

The shielding effectiveness in a reverberating environment was been examined. Coupling

shielding effectiveness for TE and TM results was presented. The reverberating environment

provides additional insight into the shielding properties in a statistical sense.

m
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Shielding of avionics equipment from both interior and exterior electromagnetic threats is

an important part of the system reliability budget. It is typically assumed that the shielding

effectiveness of a structure has a level that is a function of frequency for various angles of

incidence. Measurements in an anechoic chamber and analysis using computational methods

simulate a plane wave environment to quantify shielding effectiveness. An investigation has been

performed suggesting that an under certain conditions the aircraft fuselage behaves as a

reverberation chamber when stirred internally. Another investigation revealed that the fields in an

aircrat_ flown in the vicinity of a transmitting antenna have levels with characteristics that are

statistically similar to a reverberation environment. A conclusion that may be drawn from this is

that an aircraft fuselage is a structure in which the interior fields are not plane waves. This

significant connection raises an interesting question: What is the shielding effectiveness of an

aperture in a reverberating environment? Recently published results for the simulation of the

shielding effectiveness of a two-dimensional TM structure in a plane wave environment. Based

on the published work, the shielding effectiveness of the TM structure via aperture coupling for

several frequencies in a simulated reverberation environment are examined. Measurements were

also performed in NASA's reverberation chamber and are presented to provide a connection to

the simulated statistical results. A two-dimensional finite element model for transverse magnetic

(TM) solution inside a reverberation chamber is presented. Tuner effects on the modal structure

and the shielding effectiveness in a reverberating environment are examined. The shielding

effectiveness of the TM structure for aperture coupling for several frequencies in a simulated

reverberation environment are presented and compared to published and measured results. These

V
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results point to the development of a statistical model of shielding effectiveness. This model will

form a critical component to the overall mechanism of upset prediction in digital systems.

An Example...

An example of an application of the notion of a probabilistic model for shielding

effectiveness a problem of determining the probability of exceeding a particular voltage for a

given input voltage. Consider the problem of determining the probability of having an electric

field intensity of 1 V/m anywhere inside a cavity exposed at 1000 V/m. The shielding effectiveness

has been characterized as a Normal random variable with mean of 35.3 dB and standard deviation

of 10.5 dB at a frequency of 400 MHz. The probability of exceeding l V/m for a 1000 V/m

exposure corresponds to calculating the probability of having a shielding effectiveness less than 60

-35.3" _ = 0.9906. This calculation predicts 99.06% probabilitydBwhichis FsE(60)=l- Q 10.5 j
a

of exceeding 1V/m for an exposure of 1000 V/m If the threat level is reduced to 100 V/m the

probability of exceeding l V/m reduces to 67.36 %.
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Chapter I

A Two-Dimensional Finite Element Analysis of

Reverberation Chambers

1.1 INTRODUCTION

A reverberation chamber is an enclosure consisting of metal walls with a metallic paddle

wheel (denoted a "stirrer" or "tuner") essentially forming a high quality factor (Q) cavity with

continuously variable boundary conditions. The fields inside the chamber for a given tuner

position are completely deterministic. However, given the nature of the variable boundary

condition, the ability of a given source to couple energy into certain modes, and the passband

characteristic due the chamber Q, the fields are typically characterized by statistical means.

Specifically the probability density functions for the real and imaginary parts of the electric and

magnetic fields are normally distributed [l]. In a general three dimensional cavity the field

magnitude is Z 2with six degrees of freedom the real and imaginary parts of the three field

components. A model for the analysis of a two-dimensional cavity consists of an examination of

a waveguide structure evaluated at the cutoff frequencies for the modes. Note that at the cutoff

frequency the mode exists but does not propagate in a manner similar to the cavity modes. For

this study at cutoff the field magnitudes are Rayleigh distributed and the squared fields (related

to the power) are exponentially distributed [1] since at most two degrees of freedom exist. The

conformity of the actual fields to the specific statistical description is dependent upon the number

of modes that can simultaneously exist at a given frequency. The number of modes that can exist

Hill [3] gives theat a given frequency is a function of the cavity Q and the operating frequency.

two-dimensional specific mode density for finite Q as

2,,r abf 2 O.1)

with a and b the dimensions of the structure, f is the operating frequency, e is the velocity of

light.
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Although the primary methods of characterizing reverberation chambers have been

experimental there have been at least two papers which address the numerical analysis of two-

dimensional reverberation chambers. The transmission line matrix (TLM) method was

employed by Wu[2] to examine the characteristics of the fields in the presence of a large stirrer

in a reverberation chamber. Wu used a two-dimensional cavity with a one-dimensional stirrer

model to examine the shifting of the eigenfrequencies and the effects on the mode amplitudes for

a variety of different stirrer sizes. Wu concludes that the frequency shift for a given stirrer

essentially determines the random nature of the fields. Wu also makes an important observation

regarding the consequences of the shifting eigenfrequencies in noting that the effect of a large

stirrer is essentially a form of random modulation. This modulation is considered to have both

amplitude and frequency modulation effects. Wu concludes that an ineffective (electrically

small) stirrer is unable to provide adequate frequency modulation effects. Hill [3] examined the

concept of electronic mode stirring initially suggested by Loughry [4]. Hill employs a Green's

function approach to the analysis of an empty two-dimensional rectangular cavity with an

electric line source. Electronic mode stirring essentially implies that instead of stirring via

mechanical means to obtain a statistical field distribution, the source can be swept over a narrow

bandwidth to effect the shift in eigenfrequencies as suggested by Wu [2].

The purpose of this paper is to establish the utility of finite element techniques in the

development of an extended low frequency statistical model for reverberation phenomena. By

employing finite element techniques, structures of arbitrary complexity can be analyzed due to

the use of triangular shape functions in the spatial discretization. The TLM method uses a

rectangular grid structure which introduces an error in the discretization of structures which do

not lie along a Cartesian coordinate axis. The finite element method for the source free two-

dimensional cavity model yields the fields at all discretized points within the geometry as a result

of solving an eigenvalue problem. By contrast the TLM method requires a Fourier transform of

the data at all points desired in the field representation. Hill's analysis is applicable to an empty

structure so that the relationship between mechanical stirring and frequency stirring cannot be

readily explored. Both Wu and Hill consider a two-dimensional structure with a source at a

sufficiently high frequency to assure random fields and reasonable field homogeneity consistent

with an overmoded structure. The field statistics for reverberation chamber are well known for

the case when the chamber is clearly overmoded (such as when exciting the chamber at with an
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zl,,,,,, operating frequency that is six times higher than the first resonant frequency of the chamber), but

are less defined for undermoded low frequency chamber operation.

In the following section the basic finite element scheme will be described. The approach

uses edge elements for the transverse field to eliminate spurious solutions. In section 3 the

results for a rectangular structure will be examined. The effects of both frequency stirring and

mechanical stirring will be presented. It can will be suggested that for the low frequency

operation the typical tuner size is inadequate to provide a sufficiently random field and that

frequency stirring should be used. The strengths and limitations of the approach will be

presented in the conclusion.

W

w
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1.2 FINITE ELEMENTS FOR THE REVERBERATION CHAMBER [5-7]

A model for the analysis of a two-dimensional cavity in this paper will consist of a

waveguide structure evaluated at the cutoff frequencies for the modes. Note that at the cutoff

frequency the mode exists but does not propagate. In the two-dimensional model to be used the

cutoff frequencies can me made directly analogous to the resonant frequency of the three

dimensional structure. One significant distinction is that the cavity can be considered to possess

a bandpass response centered at the operating frequency provided that a cavity mode is supported

at that frequency. The width of the response in inversely proportional to the quality factor (Q) of

the structure. In contrast the two-dimensional waveguide structure can be considered to have a

high pass response which supports all modes with cutoff frequencies less than the operating

frequency. By using a lossless structure it is possible to examine the infinite Q case where only

one mode is considered to exist. It is suggested that this model adequately reflects the physical

situation for the low frequency reverberation chamber.

For the development of the finite element method Maxwell's curl equations can be

considered in a source free, homogeneous, isotropic, time harmonic form (all sources are

assumed steady-state with e j_ time dependence) as given by

V x k7 = -jco/.t/-t, (1.2)

and V x/_ = jomE. (1.3)

Although analytical results are available for a large class of problems for static, quasi-static, and

dynamic conditions, numerical methods typically must be applied whenever the geometry does

not coincide with a separable coordinate system.
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A full-field approach is required when the medium is characterized by higher order

modes, hybrid modes such as for a general inhomogeneous media, or a waveguide or cavity with

imperfectly conducting walls. Other problems can be expressed in a scalar form when there is a

distinct separation between TE and TM modes. In general this approximation cannot be applied

and a full vector formulation is required. The solution for the fields inside the reverberation

chamber will be required to support hybrid modes in the presence of any metallic discontinuity

or an inhomogeneity due to lossy objects. For the finite element approach the electric field in

terms of all three vector components is the desired field quantity. A two dimensional

representation for the fields may be expanded in terms of the transverse field and the longitudinal

field where

E(x,y,z) =E _, (x,y)+ 2e, (x,y)]e -r" . (1.4)

" _ and setting y = 0 for cutoff, it is possible to writeExpressing the del operator as V = V, + z77

two separate equations - one for the transverse part and another for the z component in terms of

the cutoff frequency,

=0, (1.5)

v,-/1 1 ---0, (1.6)

leading to the following weighted residual form:

4,, (,.,7)
and

_ l (v,e,).(V,T,)ds = k_c, _ e,T, ds . (1.8)

Where k_ = 21rf_x/_--_ and is the .known as the cutoffwavenumber. Setting y = 0 in eq. (1.4) has

the effect of rendering the general three-dimensional problem into a two-dimensional problem by

suppressing the z-behavior. These modes do not propagate and are analogous to the excitation

frequencies of a two-dimensional cavity.

The transverse components have been discretized using edge elements and the

longitudinal component uses node-based Lagrange functions. After integrating and summing

4
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over all elements in the domain the following eigenvalue problem of the form Ax = 2.Bx for the

cutoff wavenumber is obtained

.... olFe,
s, _e,J Lo T,JLe,J"

The solution to the matrix eigenvatue problem yields an eigenvalue-eigenvector pair

where the eigenvalue represents the cutoff wavenumber, k c , and thereby the cutoff frequency,

fc, for the corresponding eigenvector. The eigenvector represents the field solution that is

supported at frequencies at and above the cutoff frequency. The reader should be aware that by

obtaining the solution to an eigenvalue problem it is implied that for a given excitation frequency

it is assumed that the corresponding mode will exist. The basic nature of this source free

problem is that a mode exists by virtue of applying a frequency above the cutoff frequency. In a

structure with a source only those modes that are supported by the source will exist.

Additionally, since we are at cutoff the implication is that each mode exists independently. This

model corresponds to a cavity with an infinite Q. The following section will present the results

of the finite element analysis to the lossless two-dimensional reverberation chamber model.

1.3 RESULTS

This paper will consider the basic two'dimensional geometry as depicted in Figure 1.1.

An anti-symmetric tuner may be rotated to provide mechanical mode stirring, however, the

primary results of this work examine the use of a frequency stirring approach. A FORTRAN

Figure 1.1. Basic 2D Reverberation Chamber.

5
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code applying finite element techniques has been written that provides the electric field at any

point within the chamber.

The challenge of applying finite element techniques to reverberation chambers is that

enormous computational resources are required. The primary limitation is in the available

random access memory (RAM) required for in-core processing. Virtual storage, or out-of-core

processing, of the data can also be used, but greatly slows the solution time. Taking advantage

of sparsity in the resulting system of equations helps significantly. In spite of the advantages

gained by using the sparse eigenvalue solver _ optimized for the CONVEX the system of

equations was limited to the value used in this paper at around 10,000x 10,000. (The CONVEX

220 at NASA-Langley has 1 GB of random access memory.) By taking advantage of sparsity

the dimensions of the matrices A and B in eq. (1.9) are reduced to approximately 10,000x7.

However, the computation of the eigenvectors results in a full solution matrix whose dimensions

are dependent upon the number of eigenvectors desired.

For the reverberation chamber simulation a two-dimensional model of National

Aeronautics and Space Administration (NASA) Langley Research Center's B chamber with

dimension 3.96 m x 7.10 m was generated and is depicted in Figure 1.2. The resulting system of

equations was on the order of 10,000xl0,000 and was solved using a CONVEX 220 using a

sparse eigenvalue solver in FORTRAN. The data was then processed in MATLAB. The

solution of eq. (1.9) has on the order of 10,000 eigenvalues and eigenvectors as possible values

of cutoff frequency and corresponding field configurations. Although there are approximately

10,000 solutions available, only those solutions with cutoff frequencies that permit a

discretization of 10 samples per wavelength were retained. The rules governing sampling

density are not strict and can vary from problem to problem [8] and are related to the Nyquist

rate for sampled data. The sampling density has small effect on the accuracy of the cutoff

frequency, but has a significant effect on the accuracy of the corresponding field distribution.

The level of discretization allowed accurate solutions up to roughly 300 MHz, and resulted in a

possible 171 valid cutoff frequencies. A typical result for the field behavior is shown in Figure

1.3 for the x-component of the electric field, Ex, at a frequency of 108.1143 MHz. Note that the

highest field levels are in the immediate vicinity of the stirrer as would be expected since the

6
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fields become infinite near the tuner. Figure 1.4 depicts a higher frequency, 301.069 MHz, for

the infinite Q structure and depicts a significantly more complex field structure.

Figure 1.2. Discretization for the two-dimensional geometry.
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Figure 1.3. The x-component of the electric field for a frequency of

108.1143 MHz.
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Typical experimental work using a reverberation chamber involves the rotation of the

tuner and a measurement of the received power to determine such characteristics as the stirring

ratio, or a measurement of the voltage standing wave ratio (VSWR) based on reflected power at

the transmit port. The rotation of the tuner provides a variable boundary condition that results in

a deterministic variation of the field by applying finite elements. One issue of concern for the

eigenvalue problem of eq. (1.9) involving the cutoff frequency is that although all modes are

found corresponding to the particular geometrical configuration, the weighting of the modes is

not possible. In an actual reverberation chamber the source does not couple energy equally

between the possible modes. Another concern is that the modal fields represented by the

eigenvectors exist at discrete frequencies and the chamber Q does not directly enter into the

formulation. The implication is that the computed modal fields are for an infinite Q chamber,

and that multi-moding strictly speaking does not occur since only one mode can exist at a time.

We can consider Q=fo/B for a passband structure with _ corresponding to the cutoff

frequencyf_. An infinite Q would imply that the bandwidth B would be zero, thus allowing only

one mode to exist.

w

1.3.1 Frequency Stirring

Motivated by the notion that the action of stirring excites the modes weighted by a factor

governed by the quality factor of the chamber, and noting that frequency stirring may be used in

place of mechanical stirring [3] an interesting experiment was performed. For a fixed tuner

position computing all the eigenvalue-eigenvector pairs, within the accuracy constraint based on

proper discretization, corresponds to computing all the possible modes that could be excited in

the chamber. The solutions for cutoff result in a field that is either transverse electric (TE) or

transverse magnetic (TM) as the frequency is varied. Consequently, when the solution is TE

only Ex and Ey exist and when the solution is TM only Ez exists. Figure 1.5 depicts the amplitude

of Ex at one point in the chamber as the frequency is varied. The field variations increase with

frequency. This is related to the increased mode density at higher frequencies. A histogram was

constructed using MATLAB in Figure 1.6 based on the data of Figure 1.5.
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Any single component should have a Gaussian, or normal distribution [1] with the probability

density function, or pdf, given by

1 -(x-_)'

y = f(xl/.z, cr) =_---_e 2"2 , (1.10)

with mean /1 and standard deviation o:. The results obtained from the histogram are

approximately Gaussian considering the limited number of data points used (101 total points for

TE). The histogram provides one means of checking basic trends in the data as compared to a

known probability density function, but is limited in its ability to adequately characterize the

distribution. A useful visualization tool is the use of a probability plot. The normal probability

[9,10] plot essentially renders the cumulative distribution of a normal distribution to that of a

straight line as depicted in Figure 1.7 (a) for a set of normally distributed data generated from a

random number generator. The data are plotted with "+" symbol. A solid line connects the first

and third quartiles of the data corresponding to a robust linear fit of the sample statistics. The

linear fit is robust with regard to extremes in the data. The dashed line on the plot represents an

extrapolation of the data to the ends of the sample. Data that comes from a normal distribution

will appear linear on the plot. If the sample data comes from another distribution the data appear

to add curvature in the plot. Consider the curvature in Figure 1.7 Co) for a set of exponentially

distributed random data. The curvature in Figure 1.7 (b) clearly demonstrates that the data are

not normally distributed. The x-component of the electric field, Ex, is examined by means of a

probability plot in Figure 1.8. The linearity observed is sufficient to assert that the Ex is normal

for the purposes of applying procedures that assume that Ex is normal, such as combining with

other field components to assess the statistics of the squared total field as will be done later. A

similar test is performed on the other TE field component Ey in Figure 1.9. For the TM fields Ez

is obtained and is validated in Figure 1.10.

12
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Parameter estimation can be used as a further validation of the underlying statistics by

determining the maximum likelihood estimators (MLEs) for data assumed to be taken from a

particular distribution. For a normal distribution the MLEs are the mean and standard deviation.

The 95 % confidence intervals for the mean and variance are also of interest. The MLEs of a

sample set should lie within the confidence interval to assert reasonable agreement of a sample

distribution with a known probability density function. The results of the parameter estimation

are detailed in Table 1 showing the MLEs and confidence intervals for the data of E._, Ey, and E=.

The parameter estimation on the field data generated as a result of frequency stirring

demonstrates significant agreement within the 95 % confidence interval. The MATLAB

Statistical Toolbox was used for the parameter estimation.'
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Table 1. Maximum likelihood estimators (MLEs) and 95% confidence intervals.

_A

II

L

Normal

Ey

E,

/Jest

-0.00812

-0.01849

0.02408

_/ci

(-0.37780,0.02150)

(-0.04668,0.00969)

(-0.02709,0.07529)

O'es I

0.15022

0.14276

0.21460

O'es I

(0.13197,0.17436)

(0.12542,0.16570)

(0.18400,0.25750)

Exponential aest aci b_,t b_

E 2 +E,! 32.381 (25.763,38.998) 1.1870 (-14.523,16.761)
x .

L

IJ

mw

L

U

Imm
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Based on the results of the normal probability plot it can be asserted that both Ex and Ev

are normal and can combined as the sum of squared normal data which will result in an

exponential distribution. For the TE fields this squared field (proportional to power) data is

E, o,= (1.11)

The squared field data is depicted in Figure 1.11 with the corresponding histogram in Figure

1.12, and resembles the expected exponential distribution [ 1].
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Figure 1.11. The squared field (power) for a single point in the reverberation

chamber.
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Figure 1.12. The histogram for Figure 1.11.

The probability density function for an exponential distribution is

y:f(x ,a) : le -_ (1.12)

with parameter/.L In order to assess the agreement of the total squared field data a Weibull

probability plot can used in exactly the same manner as the normal probability plot. The

exponential distribution is a special case of a Weibull distribution given by the pdf

y

f(xla, b)=abxb-'e -°-_ ,x>O

0 ,x<0
(].13)
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The exponential distribution corresponds to b = 1 in eq. (1.13). The squared field data are

analyzed by means of the Weibull probability plot in Figure 1.13 and demonstrates good

agreement. The MLEs for a Weibull distribution are the values ofaest = 32.3807 and be, t = 1.187

in eq. (1.13). Of particular significance is the estimator for b which is relatively close to that of

the exponential distribution. The 95 % confidence intervals for the estimates are provided in

Table 1.

Weibull Probability Plot, E",o, (TE)
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Figure 1.13. Weibull probability plot for the squared fields for a single location as

the frequency is varied.
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The effects of mode density can be seen in Figure 1.14 for the change in frequency, Af,

versus frequency. Note that the mode density increases as the frequency is increased. One

implication of increasing mode density is that additional modes are supported for a fixed non-

zero bandwidth giving rise to a multimode environment. For an infinite Q structure the

bandwidth is essentially zero so that this implication cannot be readily explored under the current

source free environment. Another implication increased mode density is that the field can be

significantly altered by exciting alternative modes via changing the cutoff/resonant frequencies

of supported modes by changing the physical structure, thus altering the boundary conditions.

The changing of boundary conditions is typically accomplished by mechanical stirring and will

be discussed in the next subsection.

18



LJ

_===_

g_

i=,+

h_

E_
F4

Ig;;;

_1 4

l

= =

r

w

A plot ofA fversus f(in MHz)
18. ..... -_...... -_......

161-

14'-

12!-

,o!
e-

3- r-" "m _'r.......................

i

i

4

q

1

1 I

1

4L

i

2L

o_. .......
0 50 I O0 150 200 250 300 350

Frequency in MHz

Figure 1.14. A plot of Afvs. f illustrating the mode density increase as frequency

increases.

L

+ _

d

B
J

__+

L

1.3.2 Mechanical Stirring

The action of mechanical stirring is an important aspect of reverberation chamber

analysis. Applying finite elements to a rotating stirrer requires a significant amount of data

processing since the field will need to be computed for each tuner position. For the purposes of

this investigation the tuner was rotated in 1.6 ° increments for a total of 225 steps. The increment

was chosen to match the step size used by the National Institutes of Science and Technology

(NIST) when NASA Langley's chambers were characterized in early 1997. The finite element

discretization was reduced to a system size of 3,000 unknowns resulting in an upper frequency

limit of 150 MHz. The eigenvalue problem ofeq. (1.9) was solved for each position of the tuner

which resulted in a total of 43 eigenvalues between the frequencies of 20 MHz and 150 MHz.

Figure 1.15 (a) depicts the total field at approximately 60 MHz for three independent points
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located far from the tuner and greater than half a wavelength from any wall. The total field is

periodic and relatively smooth. Figure 1.15 (b) shows similar results for a frequency of

approximately 47 MHz.

Work was undertaken to explore various effects of the tuner on the frequency difference

between each mode. In this work the assumption of cutoff is advantageous since it is possible to

look at each mode in isolation. The first study is the change in frequency versus mode number

for a fixed tuner position. The results of Figure 1.16 (a) depict a plot of the frequency difference

between the modes for a 1.6 ° shift in the tuner at a final tuner position of 32 degrees

(representing the frequency difference as the tuner is moved from 30.4 to 32 degrees - an

arbitrary selection) in part (a). Figure 1.16 (b) depicts the absolute peak frequency deviation for

all tuner positions. This study may provide insight into the degree to which a particular mode is

affected by the presence of the tuner. One question is: Is there a mode that is more greatly

affected by the tuner than another? Another question is: Which mode exhibits the largest

maximum frequency deviation? It can be suggested from the data of Figure 1.16 (b) that modes

19 and 20 are most greatly affected by the tuner. The results are suggestive of a means of

addressing a long standing question [11] regarding the amount of frequency shift of a given

mode that can be obtained by stirrer action to facilitate a comparison to frequency stirring.

The notion of frequency modulation effects [2] suggest a second study to analyze the

frequency difference for a particular mode versus tuner position. This second study resulted in

the data as presented in Figure 1.17. It can be seen that the modes are significantly affected by

the tuner in a complex manner that similar to that of frequency modulation. Figure 1.17 (a)

presents the frequency deviation of a single mode as a function of tuner position. Figure 1.17 (b)

depicts the absolute peak frequency deviation for all modes versus tuner position. From Figure

1.s 16 and 17 it can be suggested that the tuner exhibits a peak instantaneous frequency deviation

of about 1.4 MHz. The random deviation is desired to excite as many modes as possible at a

given frequency.

As a third study, animations of the field have been made in which each frame

corresponds to the solution for a particular tuner position. These animations provide a means of

checking mode continuity for the fields obtained from the matrix of eigenvectors. The modes

can shift as the tuner is rotated and it is useful to examine those modes for which a radical

departure from a particular mode shape occurs. For some modes the fields rapidly change from
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TE to TM asthetuneris rotated.This modeshifting occursmostsignificantlyfor modes19and

20 ascanbe inferredfrom Figure 1.16. Thismaximumfrequencydeviationmodes19and20 is

nearly 1.4MHz. This largedeviationis indicativeof modesensitivitydueto thetunerposition.

It canbesuggestedthatthis is a desiredconditionfor properreverberationchamberoperationin

a multimode environment. As the cutoff frequency shifts around a particular operating

frequency,modesare excited or attenuated(they becomeevanescentin the two-dimensional

structure)andthefield variationprovidesthedesiredoverall field statisticsandhomogeneity.
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Figure 1.15. A plot of the total field for 225 tuner steps at two different points in the

chamber. (a) The total field at approximately 60 MHz for three independent points

located far from the tuner and greater than half a wavelength from any wall. (b)

Similar results at a frequency of approximately 47 MHz.
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1.4 CONCLUSIONS AND FUTURE WORK

This paper has presented a two-dimensional analysis of reverberation chambers using

finite element techniques. The results of the finite element analysis of the reverberation chamber

illustrate the potential utility of a 2D representation for enhancing the basic statistical

characteristics of the chamber when operating in a low frequency regime. The basic field

statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring

was shown to provide an effective frequency deviation. It can be suggested that a large

frequency deviation as compared to the operating frequency is required to obtain the desired field

statistics. The field statistics of mechanical stirring was not specifically explored in this paper

since the modes for the cutoff exist in isolation and do not yield desirable characteristics. An

advantage of employing a numerical scheme such as finite elements to analyze reverberation

chambers is that the field values at virtually any point in the structure can be easily obtained

without perturbing the field as can occur when using an antenna to monitor the fields.

Work is continuing in the development of a high speed sparse complex eigensystem

solver that will allow the solution of much larger systems (with on the order of 60,000

unknowns) to be analyzed. Other current work includes the coupling of a source to the fields in

the 2D geometry by solving the eigenvalue problem for the propagation constant and including a

source. The resulting solution would contain the proper mode weighting for the particular

configuration depending upon the stirrer position. The author is currently examining the two-

dimensional line source problem analogous to Hill's [3] work that addresses low frequency

effects on field homogeneity. Future work will also examine the three dimensional problem at

low frequencies that include the source.
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Chapter 2

Subspace-and Lanczos Sparse Eigen-Solvers for Finite

Element Sti'uctural and Electromagnetic Applications

2.1. INTRODUCTION

The finite element method has been used successfully for the solution of many practical

engineering problems in various disciplines, such as structural analysis, fluid mechanics, structural

optimization, heat transfer, electromagnetic etc.[I-7]. Essential to the finite element solution of

these problems is an effective numerical procedure for solving large-scale, sparse systems of linear

equations and generalized eigen-equations. These solution phases typically represent the most costly

steps of the analysis in terms of computational resources.

Subspace and Lanczos iterations have been developed, well documented, and widely

accepted as efficient methods for obtaining p-lowest eigen-pair solutions of large-scale, practical

engineering problems [1,2]. The focus of this paper is, however, to re-examine these 2 popular

eigen-solution algorithms, with the viewpoints to incorporate recent developments in vectorized

sparse technologies in conjunctions with Subspace and Lanczos iterative algorithms for

computational electromagnetic enhancements.

A reverberation chamber (see Figure 1) is an enclosure consisting of metal walls with a

metallic paddle wheel (denoted a "stirrer" or '_er") essentially forming a high quality factor (Q)

cavity with continuously variable boundary conditions. The fields inside the chamber for a given

tuner position are completely deterministic. However, given the nature of the variable boundary

condition, the ability of a given source to couple energy into certain modes, and the passband

characteristic due the chamber Q, the fields are typically characterized by statistical means.

Specifically the probability density functions for the in-phase and quadrature component of the

electric and magnetic fields are normally distributed [8]. The field magnitudes are Rayleigh

distributed and the power is exponentially distributed [8]. The degree to which the actual fields

conform to the specific statistical description is dependent upon the number of modes that can
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simultaneouslyexistatagivenfrequencyis afunctionof thecavityQandtheoperatingfrequency.

By utilizing anumericalanalysisschemesuchasfinite elementstheeffectsof introducing

lossmaybeaccuratelysimulated,however,forthispaperatwo-dimensionallosslesssimulationwill

beperformed.

_Z

w

Figure 1. Basic 2D Reverberation Chamber.

A two-dimensional model may yield insight into the nature of the loss experienced on real airframes

and also provide an error measure on data in the ideal mode-stirred chamber.

w

2.2 FINITE ELEMENTS FOR THE REVERBERATION

CHAMBER [7]

Consider Maxwell's curl equations in a source free, homogeneous, isotropic, time harmonic

form given by

= - jcoid /, (2.1)

g X/_ = j_?/_7, (2.2)
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Although analytical results are available for a large class of problems for static, quasi-static, and

dynamic conditions, numerical methods typically must be applied whenever the geometry does not

coincide with a separable coordinate system.

A full-field approach is required when the medium is characterized by higher order modes,

hybrid modes such as for a general inhomogeneous media, or a waveguide or cavity with imperfectly

conducting walls. Other problems can be expressed in a scalar form when there is a distinct

separation between TE and TM modes. In general this approximation cannot be applied and a full

vector formulation is required. The solution for the fields inside the reverberation chamber will be

required to support hybrid modes in the presence of any metallic discontinuity or an in homogeneity

due lossy objects. For the finite element approach the electric field in terms of all three vector

components is the desired field quantity. A two dimensional representation for the fields may be

expanded in terms of the transverse field and the longitudinal field where

 lx,yzl=blx t+;,tx,ylle  23,
^d

Expressing the del operator as V = V t + z-_" and setting g = 0 forcutoff, it is possible

to write two separate equations, one for the transverse part and another for the z component in terms

of the cutoff frequency,

x[ '__ e, (2.4)l,m V/X--/ 2 -Vt - k¢ ere ' = 0

) 2 (2.5)V, • --_7V ,e: - kc ere _ = 0

leading to the following weighted residual form:

(2.6)

and

= kffe r IIezT_ ds (2.7)
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The transverse components will be discretized using edge elements and the longitudinal

component used node-based Lagrange functions. After integrating and summing over all elements

in the domain, the following eigenvalue problem of the form Ax = k Bx for the cutoff frequency

is obtained

,r,:Oqre,1 (2.8)

2.3. BASIC SUBSPACE ITERATION ALGORITHM [1,3]

w

=w

=

m

=

w

The generalized eigen-equations (shown in Eq. 2.8), in matrix notation, can be expressed as

=[M][¢,][,q (2.9)

lnEq.(9),rnatrices[K] and [M] represennhe structural stiffness and mass, respectively. Matrices [2.] and [_b]

represent the eigenvalues and eigenvectors, respectively. The dimension (or degree-of-freedom) of

matrices in Eq. (9) is N. For many practical engineering applications, [K] is symmetrical and

positive definite. Subspace iteration algorithm can be used effectively to obtain the lowest p eigen-

pair solutions. The algorithm can be conveniently described by the following step-by-step

procedures as shown in Table 1.

w
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Table 1:Step-bystepBasicSubspaceAlgorithm

W

w

i

= :

Step 1: Select the starting iteration vectors [Y_] Nxq

Step 2: Factorize the structural stiffness matrix

[K] : [L][D][r_] r

where q << N

(2.10)

In Eq. (10), [ L ] is the lower triangular matrix, and [ D ] is the diagonal matrix

Step 3: For k = 1,2, ..... Maxiter, where Maxiter represents the input maximum number

of iterations, the following tasks need to be done

Step 4: Solve [_k+) ] Sxqfrom the following matrix equations

[g] [(I)k+ I ]N×q = [Yk]Nxq (2.11)

Step 5: Compute the reduced stiffness matrix
T

[KRk.i]qxq : [(1)k+l] qxN[ Yk]Nxq

Step 6: Compute the reduced mass matrix

[Pk.i]NXq ; [Jl_]N×df_Jk+l]Nxq

(2.12)

(2.13)

[MRk+l]qxq : [(I)]T×N [Pk*l]Nxq (2.14)

w

i

Step 7: Solve the reduced eigen-equations
M R 922

[gRk*l]q×q[Ok+l]qxq = [ k÷l]qxq[Ok+l]q×q[ k+l]qxq (2.15)

The eigenvalues [_"_2k+l] and the associated eigenvectors [ Q k+l ] need to be arranged

in the ascending orders (for example 922t < 9222< _23 < ... )

Step 8: Find an improved approximation to the eigenvectors

[Yk*l]Nxq = [Yk+t]N×q[Qk÷l]qxq (2.16)

Step 9: Check for convergence. The iterative process will be stopped if either

convergence is achieved, or the maximum number of iteration ( = Maxiter) is reached

(or else, return back to step 3).
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2.4. _NCZOS ALGORITHM [1,2]

w

w

i

i

m

Recently, the Lanczos algorithm for the solution of generalized eigenvalue problems has been

receiving a lot of attention due to its computational efficiency. The original, generalized eigenvalue

equation can be written as:

K qo = 0) 2 Mq) (2.17)

or

2

Ko( p -- 0)oM_ (2.18)

where K and M are structural stiffness matrix and mass matrix, respectively, Ko= K - oM, o is the

shift value and 0)°2 =0)2 _ a

Instead of solving Eq. (2.17), or Eq. (2.18) directly, the Lanczos algorithm generates a tri-diagonal

matrix T m

aj _2

P: % P3
_3 G3

(2.19)

w

w

--ii

through the following three-term recurrence:

rj = _j-lqj-I = Ka-l Mqj-ajqj-_jqj *]

or in the matrix form:

(2.20)

[Ko-_M]Q,. - Q,.T m = {0.0 .... rm} = r,.e rr. (2.21)

Tz : 0z (2.22)

where erm = (0,0,... l), Qm is a Nxm orthogonal matrix with columns qj = 1,2,3 ...m, and m is usually

much smaller than N. By solving the following reduced eigen system, the eigen solution of Eq.

(2.18) can be obtained as
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1
0)0 2 - 0 (2.23)

q) = Qmz (2.24)

_7
m
W

m

w

2

w

r

For most structural engineering problems, only a few lowest frequencies and the

corresponding mode shapes are required, so we have m << N which leads to a significant savings

in the number of operations.

A partial restoring orthogonality scheme and a convergence criterion are developed and

incorporated into the basic Lanczos algorithm, which is described in a step-by-step procedure, shown

in Table 2.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Table 2: Step-by-Step Basic Lanczos Algorithm

Factorization • Ko = A A A r

Form starting vector: yo _ 0; 0 o = 0
Compute: M-yo

Compute •

Yo
[3t = _/Yo'MYo ; ql-

131
Compute • 1-I1 = M01
Lanczos iteration

Forj = 1,2,3,..., do

E w = Ko -1 I-Iq)

6, = e,- 13,0,-i
0q, = 0_r M 6_ = Fl_r6,p

y, = 6, - tx,0_,

A_ = M yo
I

_j*l = ('_jTM_j)'_ = _jT,_j

Reorthogonalization of %1

qj.l = flj_ ; Pj+,I l_j*l

IF necessary solve Eq( 14)" T_ = 0_

Converged? ( If"No", then return to step 5)

Eigenvector transformation: qb = ®,_
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2.5. COMPUTATIONAL ENHANCEMENTS FOR SUBSPACE AND LANCZOS

ALGORITHMS

It has been pointed out in Sections 2.3-2.4 that matrix factorization, forward & backward

equation solution, and matrix-vector (or matrix-matrix) multiplications represent the major

computational lasts for Subspace iteration, and Lanczos algorithms. Recent developments in

Sparse technologies [3] will be fully utilized to improve the computational efficiency of both

Subspace iteration, and Lanczos algorithms.

2.6. BASIC EQUATION SOLUTION ALGORITHMS

L 7

W

r

The Choleski (or UvU) factorization is efficient, however, its application is limited to the

case where the coefficient stiffness matrix [K] is symmetrical and positive definite. With

negligible additional computational efforts, the LDL v algorithm can be used for broader

applications (where the coefficient matrix can be either positive, or negative definite). In this

algorithm, the given matrix [K] in Eq. (1) can be factorized as

[K] = [L][D] [L]r (2.25)

where [L] and [D] are lower triangular matrix (with unit values on the diagonal), and diagonal

matrix, respectively. For a simple 3x3 symmetrical stiffness matrix, Eq. (2.25) can be explicitly

expressed as

Kll Kl2 Kl3
K,, X,,

1

= L21

L31
o ]ii001 .D 2 0

L32 0 D 3

(2.26)

m

The unknown L_j and D, can be easily obtained by expressing the equalities between the upper

triangular matrix (on the let_-hand-side) and its corresponding terms on the right-hand-side of Eq.

(2.26).
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Since the LDL T algorithm will be used later on to develop efficient, vectorized sparse algorithm,

a pseudo-FORTRAN skeleton code is given in Table 3A (assuming the original given matrix is

symmetrical and full).

w

7

.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

C ° o .

C • ° .

Assuming row 1 has been factorized earlier

DO 11 I =2, N

DO 22 K=I, I-1

Compute the multiplier (Note: U represents L r)

XMULT =U(K,I)/U(K,K)

DO 33 J =I, N

U (I, J) = U (I, J)- XMULT * U (K, J)

33 CONTINUE

U (K, I) = XMULT

22 CONTINUE

11 CONTINUE

Table 3A: Skeleton FORTRAN Code for LDL T

(assuming the matrix U is completely full)

2.7. STORAGE SCHEMES FOR THE COEFFICIENT STIFFNESS MATRIX

Successful implementation of a sparse equation solution algorithm depends rather heavily

on the reordering method used. While the Reversed Cuthill-Mckee (RCM), or Gipspoole-

Stockmyer (GS)... reordering algorithms can be used efficiently in conjunction with skyline or

variable bandwidth equation solution algorit_S [9-10], these reordering algorithms are not

suitable for sparse equation solution algorithms, Designing efficient sparse-reordering

algorithms is a big task itself, and is outside the scope of this paper. For complete treatments on

this subject, the readers are strongly recommended to popular textbooks and articles in the

literature [9-10]. In this section, it is assumed that the best available sparse-reordering algorithm,
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suchasModified MinimumDegree(MMD), or NestedDissection(ND) [13], hasalreadybeen

appliedto theoriginalcoefficientmatrix [K]. To facilitatethediscussionsin this section,

assumingtheresultedmatrix [K] (a_erusingMMD, orND algorithm)takesthefollowing form

z

L

Ix]

11.

_YM

0 0 1. 0 2.

44. 0 0 3. 0

66. 0 4. 0

88. 5. 0

110. 7.

ll2.

(2.27)

In the sparse storage scheme, only non-zero values (and their corresponding locations) of the off-

diagonal terms need to be stored. The diagonal terms will be stored in a separated array. For the

data shown in Eq. 27 the number of non-zero off diagonal terms (NCOEF) is 6 (thus NCOEF=6).

w

r_

2.8. SPARSE SYMBOLIC FACTORIZATION

The purpose of symbolic factorization is to find the locations of all nonzero (including

"fills-in" terms), off-diagonal terms of the factorized matrix [U] (which has NOT been factorized

yet!). Thus, one of the major goals in this phase is to predict the required computer memory for

subsequent numerical factorization. The outputs from this symbolic factorization phase will be

stored in the following 2 integer arrays (assuming the stiffness matrix data shown in Eq. 2.27 is

used):

JSTARTROW

1
2
3
4
5
6

7=N+l

1/3
4

'5

18
L8

(2.28)

w

w

w
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JCOLNUM

1
2
3
4
5
6

7 = NCOEF2

(2.29)

=

W

w

w

The following "new" definitions are used in Eqs. (2.28-2.29):

NCOEF2 - The number of nonzero, off-diagonal terms of the factorized matrix [U]

JSTARTROW(i) - Starting location of the first nonzero, off-diagonal term for the i'h row of

the factorized matrix [U]. The dimension for this integer array is N+I

JCOLNUM(j) - Column numbers associated with each nonzero, off-diagonal terms of [U]

(in a row-by-row fashion). The dimension for this integer array is

NCOEF2. Due to "fills-in" effects, NCOEF2 > > NCOEF.

2.9 SPARSE NUMERICAL FACTORIZATION

It is generally safe to say that sparse numerical factorization is more complicated for

computer coding implementation than its skyline, or variable bandwidth cases. Main difficulties

are due to complex "book-keeping" (or index referring) process. The "key" ideas in this

numerical phase are still basically quite similar to the operations involved during the symbolic

factorization phase. There is an important modification that need to be done on the symbolic

factorization, in order to do the sparse numerical factorization (to facilitate the discussion, please

refer to the data shown in Eq. 2.27):

For symbolic factorization purpose, there is no need to have any floating arithmetic

calculation. Thus, upon completing the symbolic process for row 4, there are practically no

needs to consider row 2 and/or row 3 for possible contributions to row 5. Only row 4 needs

to be considered for possible contributions (or "fills-in" effects) to row 5 (since row 4, with

its "fills-in", is already full).

For numerical factorization purpose, however, all rows 2, then 4 and then 3 will have to be

included in the numerical factorization of row 5.
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2.10 SPARSE SOLVER WITH IMPROVED STRATEGIES

w

w

=

L

.=

h

w

To simplify the discussion, assuming that upon completion of the symbolic phase, the

stiffness matrix [K] will have the following form

[K]

1 2 3 4

x
SEq.

5 6 7 8 9 10 II 12 13

X X X X X

X X X X X

X X X X X

X X

x X X

X x

x

F F F

x x F

x x F

x x F

x F

X

14

x I

x 2

x 3

x 4

x 5

x F 6

x x 7

x x 8

x x 9

x x 10

x x I

x x 12

x x 13

x 14

(2.30)

In Eq. (2.30) the stiffness matrix [K] has 14 dof. The symbols "x" and "F" refer to the original

nonzero terms, and the nonzero terms due to "Fills-in", respectively. It can be seen that rows 1-3

have the same nonzero patterns (by referring to the enclosed "rectangular" region, and ignoring the

fully populated"triangular" region of rows 1-3). Similarly, rows 4-5 have the same nonzero patterns.

Rows 7-10 have the same nonzero patterns. Finally, rows 11-14 also have the same nonzero

patterns. Thus, for the data shown in Eq. (2.30), the "Master" (or "Super") dof can be generated as

1
2
3
4
5
6
7

MASTER 8

9
10
11
12
13

14-- N

3
0
0
2
0
1
4
0
0
0
4
0
0
0_

(2.31)

According to Eq. (2.31), then the "master" (or "super")' dof are dof #1 (which is followed by 2
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"slave" dot'), dof#4 (which is followed by 1 slave dof), dof#6 (which has no slave doff), dof#7

(which is followed by 3 slave dof), and dof#11 (which is followed by 3 slave dof).

The skeleton FORTRAN code LDL v (with full matrix) shown in Table 3A should be

modified as shown in Table 3B for incorporating sparse and "Master" (or "Super") degree-of-

freedom-strategies

. C o.o

2.

3.

4.1 c...

4.2

5.1

5.2

5.3 c...

6.

7.1

7.2

8. 33

9.1

9.2

10. 22

11. 11

Table 3B: Pseudo FORTRAN Skeleton Code

for Sparse LDL T Factorization With Master dof Strategies

Assuming row 1 has been factorized earlier

DO 11 I=2, N

DO 22 K = Only those previous "master" rows which have contributions to

current row I

Compute the multiplier(s) (Note: U represent Lr)

NSLAVEDOF = MASTER(I)- 1

XMULT = U (K,I) / U (K,K)

XMULm = U (K+m,I) / U(K+m, K+m)

m = 1,2, ... NSLAVEDOF

DO 33 J = appropriated column numbers of"master" row #K

U (I,J) = U (I,J) - XMULT * U(K,J)

- XMULm * U (K+m,J)

CONTINUE

U (K,I) = XMUL m

U (K+m, I) = XMUL_

CONTINUE

CONTINUE

2.11 NUMERICAL EVALUATIONS OF DIFFERENT GENERALIZED EIGEN-

SOLVERS

Based upon the discussions in previous sections, practical finite element models (such as

Exxon off-shore Structure [6], High Speed Civil Transport Aircraft [4], and a 2-D Reverberation

Chamber [ 11 ] are used to evaluate the performance of the developed sparse eigen-solvers. Since

the codes have been written in standard FORTRAN language (and without using any library

subroutines), it can be ported to different computer platforms (such as SUN-Spare-20, IBM-

R6000/590, Intel Paragon, Cray-C90 etc...) with no (or minimum) changes to the codes.
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The accuracy of the developed codes for solving generalized eigen equations can be measured

by the Relative Error Norm (=R.E.N.) which can be computed as:

- ttx -zv4
R.E.N.= [[Kq_I (32)

!

w

The basic subspace iteration code, given in Ref. [ 1], will be used as a based-line reference. This

"basic" subspace iteration code [ 1] will be compared to the developed basic, "sparse" subspace

iteration, and "sparse" Lanczos codes. It should be emphasized here that more advanced, faster

version of Subspace Iteration software has also been reported in the literature [1]. Lumped

masses are used in all examples in this section.

Example 1: Exxon Off-Shore Structure [6]

=
=

i

The finite element model for the Exxon structure has used extensively in earlier research

works. The resulted system of generalized eigen-equations from the Exxon model has 23, 155

dof.

The number of nonzero terms of the original stiffness matrix is 809,427. Using the Nested-

Dissection (ND) algorithm, the number of nonzero terms (including "fills'in" terms) is

10,826,014. The relative error norm (or R.E.N., defined in Eq. 32) and the wall-clock time are

presented and explained in Figure 2. It should be noted here that on the IBM-R6000/590

workstation, vector processing capability is available, where as the vector processing capability

is "not" available on the Sun Sparc-20 workstation.
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Example 2: High Speed Civil Transport (HSCT) Aircraft [4]

The finite element model for the HSCT aircraIi has been used extensively in earlier research

works. The resulted system of generalized eigen equations from the HSCT model has 16,152

dof. The number of nonzero terms of the original stiffness matrix is 373,980. Using the

Modified Minimum Degree (MMD) algorithm, the number of nonzero terms (including"fill-in"

terms) is 2,746,286. The numerical performances of 3 generalized eigen-solvers are presented

in Figures 3-4.

= :

=
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Figure 2: Exxon Model

(USTSU31, Sun-Sparc20 Workstation)
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Figure 3: HSCT Aircra_ model

(Stretch, IBM-R600/590 Worksation)
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Figure 4: HSCT Aircraft model

(Rhino, ODU Sun Sparc-20 Worksation )
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w Example 3: A Two-Dimensional Reverberation Chamber (R.C.) [11]

w

The finite element model for the 2-D Reverberation Chamber (RC) has been used in earlier

research works [ 11 ]. The resulted system of generalized eigen-equations from the R.C. model

has 10,972 dof. The number of nonzero terms of the original "stiffness" matrix is 23,946. Using

the MMD algorithm, the number of nonzero terms (including "fills-in" terms) is 165,135. The

numerical performances of 3 generalized eigen-solvers are presented in Table 4.

w

u

m

Table 4: A 2-D R.C. Model

(Rhino, ODU Sun Sparc-20 Workstation, Consistent mass is used)

No. Eigen Values Norfolk (Sun 3500/ODU),

SV Lan

(in seconds)

30 11.9sec

100 170.7

300 1502.8 (= 25min)

Rhino, ODU Sun Sparc-20 Rhino, ODU Sun Sparc-20

SV Sub SV Lan

(in seconds) (in seconds)

221 51

5,081 655

42,262 6,696

u

m

m
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Example 4: A Simple Mathematical Data For Validating "Complex Numbers" Eigen-

Solution Case

In this example one would like to solve the following generalized eigen value ( 12 degree-of-

freedom) problem:

[X][, ]=[_][M][,]

w

!

where:

Ix]

01.o,o.o)(o.,o.)............(o.,o.)
(12.,o.)......(o.,o.)

(13.,0.)
(22.,0.)

12x12

i

(L,0.)(0.,0.)............(o.,o.)-0.,o.).....(o.,o.)
[M]I (1.,o.).(o.,o.)

sym (1.,O.)
12x12

The first 4 "complex" eigen values can be computed from the FORTRAN code as:

w Aa = (11.0,0.0), 4 = (12.,0.), _ = (13.,0.), and it4 = (14.,0.)
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2.12 CONCLUSION

w

= ,

In this paper, basic generalized eigen-solution algorithms are reviewed. Major

computational tasks in Subspace iterations, and Lanczos algorithms have been identified.

Efficient sparse technologies have been developed, and fully utilized, in conjunction with the

basic Subspace iterations and Lanczos algorithms (such as: sparse symbolic, numerical

factorization with unrolling strategies, sparse forward & backward solutions, sparse matrix-

vector multiplications etc...) for efficient solutions of the generalized eigen-equations.

Numerical results from practical finite element models have clearly indicated that the

proposed "sparse" Subspace iterations and Lanczos algorithms have offered substantial

computational advantages over the traditional "skyline", or "variable bandwidth" strategies.

Both lumped and consistent mass formulation have been incorporated into our eigen-

solution package. Furthermore, both stiffness and mass matrices can be provided with either

real, or complex numbers.

Applying these advanced techniques will enable a thorough statistical analysis of the

reverberation chamber fields. The estimated required order of the eigenvalve problem is very

large (100,000) and is driven by the desire to model the large number of modes which exist at

higher frequencies. The number of eigensolutions that can be accurately modeled is

frequency limited.

Future work will include a complex eigensolver to model the typically lossy behavior of

reverberation chambers and the resulting statistical field variations.

tnJ
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Chapter 3

Statisticai Characterization And The Simulation Of A

Reverberation Chamber Using Finite Element

Techniques

3.1 INTRODUCTION

A reverberation chamber is an enclosure consisting of metal walls with a metallic paddle

wheel (denoted a "stirrer" or "tuner") forming a high quality factor (Q) cavity with continuously

variable boundary conditions. Reverberation chambers have attained increased importance in the

determination of electromagnetic susceptibility of avionics equipment. This importance will

become even more critical as advanced high-speed transport aircraft are developed that

increasingly depend on electronic sensors and computer control of flight surfaces to manage the

flight parameters.

The fields in a reverberation chamber are typically characterized by statistical means.

Specifically the probability density functions for the real and imaginary components of a

particular polarization of the electric and magnetic fields are normally distributed. The field

magnitudes are Rayleigh distributed and the power is exponentially distributed. Reasonable

statistical agreement for a source-free two-dimensional finite element model has been obtained

and was the primary emphasis of the work presented by the author [ 1].

There are two focus areas that will be addressed in this work. The first problem to be

briefly addressed in this paper is an examination of a two-dimensional finite element model for

both the transverse electric (TE) and transverse magnetic (TM) solutions inside a reverberation

chamber. A two-dimensional approach to the analysis of reverberation chambers was initially

suggested by Wu [2] for mechanical stirring using the transmission line matrix (TLM) method.

Hill [3] examined frequency stirring for an empty two-dimensional structure supporting TM

modes. For the current work the fields (both TE and TM) in the cavity will be simulated with an

emphasis on the tuner effects on the modal structure and the resulting statistics of the field
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distribution. The second focus is shielding effectiveness in a reverberating environment. Typical

shielding effectiveness measurements are performed in a plane wave environment under various

angles of incidence. The reverberating environment may provide additional insight into the

shielding properties in a statistical sense.

The following section presents an overview of the computational tools used to simulate

the reverberation environment. The TE results for the simulation "chamber" are then presented

with an examination of coupling (fields inside vs. outside) shielding effectiveness through an

aperture. The TM results are then presented for the simulation chamber. The application of a

two-dimensional analysis tool may lead to useful investigations of stirrer efficiency, field

homogeneity, and shielding effectiveness.

3.2 FINITE ELEMENT FUNDAMENTALSFOR TE AND TM FIELDS

The finite element method is a deterministic approach to the solution of Maxwell's

equations using a weighted residual formulation over a set of compact-support basis functions to

solve for the fields. Consider the geometry of Figure 3.3. I with a source located at (Xo, Yo).

PECs
Tuner

w

w

Apmure
Source

Figure 3.1. The 2D reverberation geometry

w
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The electromagnetic field behavior is governed by Maxwell's equations as given by

V x E = -jcopffI, (3.1)

V x ft = j_toeE + `7. (3.2)

The inclusion of the source will be accomplished through the characteristics of the electric

current density,,], in eq. (3.2). By taking the curl of eq. (3.1) and substituting eq. (3.2) and

assuming non-magnetic media the following inhomogeneous vector wave equation is obtained:

V x(V x £') - ko2erE' = -jkor/oJ (3.3)

where E"is the electric field intensity in volts/meter, k o is the wavenumber with ko = coffin, at a

radian frequency co, with permittivity e and permeability p, and intrinsic impedance 7/o. The

behavior of the electric field is of the form

7E(x, y,z) =[_., (x, y)+ _.ez (x, y)]e-" .

Setting _, = 0 for cutoff and expressing the del operator as V = V, + _ e, it is possible to write

two separate equations - one for the transverse part and another for the z component. The

transverse field behavior is modeled with the use of edge elements and the z-directed fields are

modeled using traditional node based elements. The expression of eq. (3.3) will depend on

whether a TE or TM field will be considered to exist within the structure. This dependence

completely rests in the expression of the electric current density, `7.

r

w

=

w

3.2.1 TE Fundamentals-a dipole source

The TE case can be expressed by considering a transverse electric current that can be

thought of as a short dipole antenna with a uniform current density. In the TE case ,7 can be

expressed

= I0_rr

from which the eq. (3.3) is written

V, x(V, x_,)-k_er_, = -jkorloloJ-"_ (3.4)

V, .(V,e,)+koe, e _ =0. (3.5)

Eq. (3.4) represents the transverse variation and the eq. (3.5) represents the z-directed variation.

The transverse electric current exists only on the edge of a given element and is zero elsewhere.
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w Obtaining the weighted residual

assigning the continuity conditions.

and

II[- (Vie,). (V,T_)+ k_erezT z ]ds =0

form involves integrating over the element support and

Integrating on an elemental basis is accomplished by

= -jkorlo IIE J-_r. _ ] ds (3.6)

(3.7)

Assigning continuity conditions and setting the fields to zero on the perfectly conducting wails

and tuner yields a matrix equation of the form A_ = b for the transverse fields. Note that for this

system that _ = {E x Ey }r and that E_ = 0.

leading

3.2.2 TM Fundamentals-an infinite line source

Following directly the work of Hill [3], the TM case uses an infinite line source located at

(x0, Y0 ) of the form

J = P.Io6(X- xo)6(y- Yo). (3.8)

so that (4) can be written as

V,x(V,x_,)-k_, =0 (3.9)

V,. (V,e,)+ k_ cre= = -jkorlolo6 (x- xo )6 (y - Yo ) (3.10)

to the following weighted residual form:

and

II_-(V,e, ) * (V,T_)+ k_ e_e, T_]ds = -jkorloIoT _ (Xo,Yo) (3.12)

Note that in obtaining eq. (3.12), the integration required to obtain the right-hand side is trivial.

The resulting linear system of equations is of the form A_ = b. Note that for this system that

i = { E_ } r and that Ex = 0 and Ey = 0.

= .

w

3.3 TE DIPOLE SOURCE RESULTS

The application of the finite element technique to fields which are transverse electric

(TE) will be presented in this section. The resulting fields, Ex and Ee, will be used in the two-

dimensional TE finite element model of the reverberation chamber. Some measures of
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reverberation chamber performance include the statistical characterization of the fields, stirring

ratio, field uniformity, the maximum to average ratio, and the normalized standard deviation [4].

Several of these measures will be applied to provide basic validation of the reverberating

characteristics of the simulation "chamber". The shielding effectiveness in the simulation

chamber will also be presented in the next sub-section. The 2D dipole source results are obtained

by the rotation of the tuner for 225 steps in 1.6 ° increments, thus providing a full mechanical

rotation of the tuner. The results represent the solution of the matrix equation corresponding to

eq. (3.6) for each of the tuner positions at each frequency of interest. Consider the geometry of

Figure 3.3.2 depicting the discretized structure to be analyzed with a typical result in Figure

3.3.3. Note that the results of Figure 3.3.3 are logarithmic and emphasize the field structure

rather than the absolute field levels. The source is in the right-hand region at location (2, -1).

_, ._: .... ;" -:," _:_..-zz_==t:r,z::.

Figure 3.2. Diseret_ed geometry of Figure 3.1.

1

0 4

ymm _.

-1 0

Figure 3.3. Fields for Figure 3.2 for _ fixed tuner

position.

L_
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3.3.1 Reverberation in the TE environment

There are several key factors governing reverberation characteristics and these factors

can be used to determine if a chamber is operating properly. These factors include the stirring

ratio, field uniformity, the ratio of the maximum field to average field, and the underlying

statistical characterization of the fields. Of these measures of reverberation characteristics the

stirring ratio and field uniformity will not be addressed in this paper. As the values of the field at

particular point are plotted it was noted that strong numerical resonances occur throughout the

computational domain in the lossless structure. These resonances correspond to the eigenvalues

of the source-free problem [1]. In order to improve the numerical stability the quality factor, Q,

can be altered by filling the chamber with lossy material (e = l+j0.001). The field statistics at a

given point for 225 tuner steps is depicted in Figure 3.3.4.
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Figure 3.4. The statistical characteristics of the total TE field for a

fLxed point for 225 tuner positions.

The total squared electric field statistics at a point inside the shielded LHS are depicted with a Q

of 1000 at a frequency of 400 MHz. The Weibull probability plot [1] shown at the bottom of

Figure 3.3.4 is a strong indicator regarding the nature of a sample statistic. The probability plot

helps eliminate ambiguities that may arise in interpreting agreement by comparing cumulative

distribution functions (CDFs). The probability plot maps the parent distribution to a straight line
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andemphasizesdifferencesin thetails of the sample distribution. Note that the + symbols on the

plot represent the sample and all but approximately 2 % of the data are nearly collinear with the

parent Weibull distribution. The Weibull density function is a more general density function that

can fit a variety of bounded continuous distributions including the exponential distribution. The

square of a particular component of the electric field, say E 2 , can be written

E_ = Re{Ex} 2 + Im{Ex} 2. (3.13)

If the underlying distributions for the real and the imaginary parts are N(0,1) then the squared

sum is exponentially distributed as well as distributed as chi-squared with two degrees of

freedom. The probability density function for an exponential distribution is

Y = f(xlp)= 1 e--_
ll

with parameter ft..

(3.14)

The exponential distribution is a special case of a WeibuU distribution given

by the probability density function

= tf(xla,b ) = abx b-ze -a_` ,x > 0
Y

L 0 ,x<0
(3.I5)

The exponential distribution corresponds to b = 1 in eq. (3.15). Considering the x-component of

the electric field as depicted in Figure 3.3.4, the estimate of best =1.0799 is a good indicator of

agreement with the expected distribution. It strongly suggests that the underlying distributions

are indeed normally distributed. The CDF is plotted in Figure 3.3.5 showing a strong agreement

with the expected Weibull distribution and the chi-squared distribution with two degrees of

freedom. Another measure of reverberation quali_ is the normalized standard deviation o'_ is

defined by

or

O'n=--
P

where cr is the sample standard deviation and ,u is the sample mean. The point shown (70,40) in

the right hand side (RHS), which is the complex portion of the structure, has a normalized

standard deviation of 0.991. The ratio of the maximum to average field is 7.93 dB is shown in

Figure 3.3.6 which agrees well the expected value of 8 dB. The stirrer ratio is 33.8907 dB which

is indicative of excellent stirring within the complex R/IS. A summary of example statistics for
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a few points in the structure is shown in Table 1. Table 1 portrays the Weibull parameters, the

normalized standard deviation, the max-to-average ratio, and the stirring ratio for two points in

each of the two major regions within the simulation chamber. The plots of Figures 4,5, and 6

represent the data for the point (70,40). Note the general excellent agreement for each of the

points shown. Of particular interest is that the LHS is unstirred and it has generally identical

statistical and reverberation characteristics as the complex RHS. This interesting result is

suggestive of a form of "source" stirring wherein the fields appearing at the aperture joining the

two regions acts with sufficiently random amplitude and structure as to excite a complex field in

the non-complex region.

Table 3.1. Summary of statistical characteristics for the TE fields.
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[]

Weibull
TE

Parameters

Ref. Coordinates _, MA(dB) SR(dB)

(20,40) (-2.16, -0.42) 0.9724 35.35

(40,40) (-0.79, -0.42) 1.1933

a b

0.5033 0.9942

0.5429 0.9293

0.4577 1.0799

0.5280 0.9541

7.302

9.505 32.43
LHS

29.00

a n =0,99103
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Figure 3.5. The cumulative distribution of the total

TE field for a fixed point for 225 tuner positions.
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Figure 3.6. The total TE field for a fixed point for 225 tuner

positions highlighting the max-to-average ratio and stirrer

ratio.

Considering the field uniformity within each region can further highlight the idea of

"source" stirring. In this study the field uniformity will be exploring by considering a test region

in which the ensemble average of the fields is sampled and compared to other points within the

test region. The fields will be considered tO be uniform if the sample is with + 3 dB of the

average of all sample points. The test region is considered uniform if 75% of the sample field

points are within the + 3 dB region. The total electric field in the RHS is studied in Figure 3.3.7.

The top of Figure 3.3.7 depicts the sample region wherein 100 points are chosen at random.

Note that the wall with the aperture is not shown, but exists for reference points (50, Y). The

uniformity is depicted in the bottom of Figure 3.3.7 with the circled data representing points

within + 3 dB of the average value of approximately -7 dB. The triangles indicate points that are

outside the specified limits. As can be seen, 81 out of 100 points are within the limits and

therefore the test region in the RHS can be considered to have a uniform field. The uniformity in

the LHS is shown in Figure 3.3.8 with 91% of the points falling within + 3 dB of the average.

The good result for the field uniformity in the non-complex LHS further suggests that "source"

stirring can provide excellent reverberation characteristics.

55



)i
t,-4

U
m

t :

_-=

L

Figure 3.7. :L3 dB Field uniformity of the total TE field for

100 pointsin theRHS for 225 m.er positions.

D
i

L_
i

t

w

I

r_r_

E

_-2

..... -_- -6

"_-B
I/i

_o o _.dix3 o _ o qb ^ O_)oOaO r,-
,Y,-,O O,M::) a_Oo v 0_ ',-, ^0 .(_ .-.., CX:_O

-o 2" oooo _oo,-,_o o '_o °

i i i i i i i t . i I

_0 20 30 4o 50 60 70 so- 90 !_0

Sampte p..umb,er,91 psWntscorrect (must. be >75)

Figure 3.8. __3 dB Field uniformity of the total TE field for

!00 points in the LHS for 225 tuner positions.

56



q

4

r_

[]

r

m

it.=:,

w

r
t=w

-!:

---y

,=t=_

irl=_

m

mw

=

r=

3.3.2 Shielding Effectiveness for the TE structure

The application to the problem of coupling shielding effectiveness via an aperture will be

examined in this section. The geometry of Figure 3.1 is the geometry under consideration for

this examination. Consider a set of random points in the source region (RHS). For those fixed

points there will be some maximum field level that will exist over all tuner positions. This level

represents the maximum level in the source region. Consider taking another set of random points

in the test region (LHS). This set consists of the individual maximums for each test point for all

tuner positions. A typical result for the shielding effectiveness of the maximums can be seen in

Figure 3.9. Interestingly there are 22 occurrences of negative shielding effectiveness out of the

total of 100 random points chosen. This is indicative of phenomena wherein the field is larger in

the shielded test region than in the source region. The average shielding effectiveness of the

maximums was 2.19dB for 400 MHz.

Ey 10
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• 6

_4
%

0
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Shielding Effectiveness M_-.Q = 1000, f = 400 MI-{.z

....,...........................i...... ....l .......L......
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Figure 3.9. Shielding effectiveness of the maximums for the TE field.
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3.4 TM INFINITE LINE-SOURCE RESULTS

The work presented in this section will examine the statistics of the TIM fields in the two-

dimensional reverberation structure This work closely follows the work of Hill in that the on|y

surviving field component is Ez. The results presented in this section will exactly parallel the

work on the TE fields previously shown, so developmental discussions will be omitted.

3.4.1 Reverberation in the TM environment

The field solution for the TM problem consists of the z-component of the electric field

with real and imaginary parts. The field statistics for the TM case are shown in Figure 3.10 for

reference point (70,30). The estimate of the shape parameter best = 0.50945 for the Weibull

distribution indicates that one or more of the underlying distributions is not normally distributed.

This result is consistent with Hill's results when the frequency chosen is such that an insufficient

number of modes exist within the structure. It is significant to note that the field levels for the

TM problem are several orders of magnitude larger than the TE problem. The CDF of the

sample is depicted in Figure 3.11 in comparison with the Weibull distribution and the chi-

squared distribution with the normalized standard deviation of 2.3413. The maximum to average

ratio is shown in Figure 3.12 and is 12.34 dB. The stirrer ratio is also portrayed in Figure 3.12

and has a value of 49.56 dB. Table 2 depicts several points in various points within the geometry

similar to those shown earlier with similar results for the fields in the complex RHS and the non-

complex LHS.

EaF._÷I--F,_q vs. 'l"_=_r po-.dfio=, Q = 1000. f "400

40 I [ i
50 100 I.,_0 200

T',==' Jt,_ ,I =1 _ ,,y =-0.82, (70,20)

Wdbun Probability Pl0t,R_z2+lmlT.z2

: :_:_.L.:::_::.:t_'_L :::_:_:.:_,._,:::_::.':.__t.::::.::z_: - .,i:.

i _'_'_"_ _=_.;_._;_*_.-_*_.;_:-_._._`.;_._;_._._T_;_

10"_ IO _z t0 =1 10= iO s

I)'_a. a¢.=l.O_, b,,._=0509"_5

Figure 3.10. The statistical characteristics of the total

TM field for a fixed point for 225 tuner positions.
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Ref.

(20,40)-

(40,40)

(70,30)

(80,40)

Table 3.2. Summary of statistical characteristics for the TM fields.

TM

Coordinates

Weibull

Parameters

_n

2.3479

a b

1.042 0.509

1.043 0.508

1.041 0.509

1.043 0.508

MA(dB)

12.38

SR(dB)

48.68
(-2.16,-0.42) }LHS
(-0.79, -0.42) 2.3461 12.36 50.36

(1.38, -0.82) 2.3413 49.5512.34

12.36(2.09, -0.42) 2.3454 50.51
RHS

w

i

w

The field uniformity in the RHS and LHS are studied in Figures 13 and 14. Note that the

RHS has 63 % uniformity in Figure 3.13 and the LHS has 59 % uniformity. These results

combine to raise some basic questions regarding the statistical characteristics of the TM model at

the frequencies used, and are the subject of a more detailed exploration in the following

paragraph.

Further examination revealed that the real and imaginary parts of E_ is distributed

according to a Johnson SU distribution [5,6]. The Johnson distribution is denoted Su and is a

four parameter distribution with a probability density function

ex _
f(x)= 2,_,d(x_y)z +, 82 --_ _,--_-) +1 (3.16)

for all real numbers x. The parameters are a location parameter y _ (---oo,oo), scale parameter ,8>

0, and shape parameters a I _ (---oo, oo), and or2> 0. The CDF is given by

F(x)=O a, +a21n --fl-- ,_{-'-_---) ,

with _(z) the standard normal distribution function. The skewness of the density function is

represented in the shape parameter a_ with the density function skewed lef_ when al >0,

symmetrical when cr_ = 0, and skewed right when a_ < 0. Tables 3 and 4 depict the summary

statistics for the real and imaginary parts, respectively. These results depict a wide variation of

the parameters for various locations within the structure. Work is ongoing to ascertain the

connection that can possibly be made between these results and an undermoded reverberation
g

chamber.
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Table 3.3. Summary of statistical characteristics for the real part of the TM fields.

Ref.

(20,403

Re{Ez} Johnson So Parameters

Coordinates cq

(-2.16, -0.42) -0.51 lO

(40,40) (-0.79, -0.42) 0.5249

(70,30) (1.38, -0.82) -0.6526

(80,40) (2.09, -0.42) 0.5366
,

Y

14.98 17.93

-52.77 63.63

11.93 26.33

-34.69 43.59

_2

0.4818

0.4903

0.5331

0.4931

LHS

RHS

Table 3.4. Summary of statistical characteristics for the imaginary part of the TM fields.

L_
w

m

lm{Ez} Johnson So Parameters

Ref. Coordinates y ix2

(-2.16, -0.42) -148.64 0.9527199.28 -0.2355

651.37 0.2439

203.49 -0.2830

441.17 0.2482

(20,40) } LHS
(40,40) (-0.79, -0.42) 506.07 0.9361

(70,30) (1.38, -0.82) -186.49 0.8880
} RHS

(80,40) (2.09, -0.42) 345.93 0.9342

m
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3.4.2 Shielding Effectiveness for the TM structure

The shielding effectiveness of the maximums for the TM field is depicted in Figure 3.15.

The resulting coupling appears to be much stronger for and identical test configuration. The

average shielding effectiveness is seen to be 0.991 dB with 40 points out of 100 demonstrating

negative shielding effectiveness.
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Figure 3.15. Shielding effectiveness of the maximums for the
TM field.
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3.5 CONCLUSIONS

A two-dimensional finite element model for both the transverse electric (TE) and

transverse magnetic (TM) solutions inside a simulation reverberation chamber has been

presented. Tuner effects on the modal structure and the resulting statistics of the field

distribution have been explored. It was demonstrated that the TE simulation reverberation

chamber provided excellent statistical and reverberation characteristics. The measures of

reverberation characteristics included normalized standard deviation, the max-to-average ratio,

the stirrer ratio, and the field uniformity. In addition the notion of "source" stirring was

introduced wherein the fields that were coupled into the non-complex geometry were shown to

be statistically similar to those in the complex environment. The idea of source stirring may

shed light on the question of whether it is absolutely necessary to stir in all regions that a

reverberation type test is being performed. The practical issues are enormous when considering

the demands that internal stirring may place on the testing regimen. The TM simulation chamber

did not satisfy any of the required reverberation characteristics, and the field components were

shown to be distributed according to a Johnson Su distribution. Further study may link the

results of the TM simulation chamber to an undermoded reverberation chamber and may be

useful in extending the useful low frequency of the reverberation chamber. The shielding

effectiveness in a reverberating environment was been examined. Coupling shielding

effectiveness for TE and TM results was presented. The reverberating environment provides

additional insight into the shielding properties in a statistical sense.
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Chapter 4

Shielding Effectiveness In A Reverberation Chamber

Using Finite Element Techniques
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4.1 INTRODUCTION

A reverberation chamber is an enclosure consisting of metal walls with a metallic paddle

wheel (denoted a "stirrer" or "tuner") forming a high quality factor (Q) cavity with continuously

variable boundary conditions. Reverberation chambers have attained increased importance in the

determination of electromagnetic susceptibility of avionics equipment. This importance will

become even more critical as advanced high-speed transport aircraft are developed that

increasingly depend on electronic sensors and computer control of flight surfaces to manage the

flight parameters.

Shielding of avionics equipment from both interior and exterior electromagnetic threats is

an important part of the system reliability budget. It is typically assumed that the shielding

effectiveness of a structure has a level that is a function of frequency for various angles of

incidence. Measurements in an anechoic chamber and analysis using computational methods

simulate a plane wave environment to quantify shielding effectiveness. An investigation has

been performed [ 1] suggesting that an under certain conditions the aircraft fuselage behaves as a

reverberation chamber when stirred internally. Another investigation [2] revealed that the fields

in an aircraft flown in the vicinity of a transmitting antenna have levels with characteristics that

are statistically similar to a reverberation environment. A conclusion that may be drawn from

this is that an aircraft fuselage is a structure in which the interior fields are not plane waves. This

significant connection raises an interesting question: What is the shielding effectiveness of an

aperture in a reverberating environment7 The emphasis of this paper is the examination of a

two-dimensional finite element model of a reverberation chamber to explore the shielding

effectiveness of an aperture over a variety of frequencies in a TM field configuration.
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The fields in a reverberation chamber are typically characterized by statistical means.

Specifically the probability density functions for the real and imaginary components of a

particular polarization of the electric and magnetic fields are normally distributed. The field

magnitudes are l_ayleigh distributed and the power is exponentially distributed. Reasonable

statistical agreement for a two-dimensional finite element model has been obtained and was the

primary emphasis of the work presented by the author [3] for a source free problem. The field

statistics for the TM model will not be developed in this work.

A two-dimensional approach to the analysis of reverberation chambers was initially

suggested by Wu [4] for mechanical stirring using the transmission line matrix (TLM) method.

Hill [5] examined frequency stirring for an empty two-dimensional structure supporting TM

modes by defining the 2D Green's function for the rectangular structure. For the current work

the fields in the cavity will be simulated as transverse magnetic (TM) with an emphasis on the

tuner effects on the modal structure and the resulting shielding effectiveness in a reverberating

environment. Typical shielding effectiveness measurements are performed in a plane wave

environment under various angles of incidence. The reverberating environment may provide

additional insight into the shielding properties in a statistical sense. Park [6] recently published

results for the simulation of the shielding effectiveness of a two-dimensional TM structure in a

plane wave environment. Interestingly he compared the simulated two-dimensional results with

measured results. Based on Park's work, the shielding effectiveness of the TM structure via

aperture coupling for several frequencies in a simulated reverberation environment will be

examined. Measurements were also performed in NASA's reverberation chamber and are

presented to provide a connection to the simulated statistical results.

The following section presents an overview of the computational tool used to simulate

the reverberation environment. The TM results are then presented for the simulation chamber

and the replacement (fields in box vs. fields with no box) shielding effectiveness is explored. A

comparison of the TM results to an anechoic environment is made. Finally a comparison to

measured results in NASA's reverberation chamber are presented. These results will point to the

development of a statistical model of shielding effectiveness that will form a critical component

to the overall mechanism of upset prediction in digital systems.
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4.2 FINITE ELEMENT FUNDAMENTALS FOR TM FIELDS

The finite element method is a deterministic approach to the solution of Maxwell's

equations using a weighted residual formulation over a set of compact-support basis functions to

solve for the fields. Consider the geometry of Figure 4.1 with a source located at (Xo,yo).

r

u

PECs Tuner

Source

Figure 4.1. Geometry for the TM problem.

w

w

=

The electromagnetic field behavior is governed by Maxwell's equations as given by

V x _7= -j_,uH,

VxH =jocE+J.

(4.1)

(4.2)

The inclusion of the source will be accomplished through the characteristics of the electric

current density, J, in eq. (4.2). By taking the curl of eq. (4.2) and substituting eq. (4.1) and

assuming non-magnetic media the following inhomogeneous vector wave equation is obtained:

V x(V x E) - k026,_? =-jkorl3 (4.3)

where _" is the electric field intensity in volts/meter, k0 is the wavenumber with k 0 = co,_-_, at

a radian frequency co, with permittivity c and permeability/.t, and intrinsic impedance q0. The

behavior of the electric field is of the form
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E(x,y,z)=[_, (x,y)+'2e_ (x,y)_e -yZ•

^_
Setting y = 0 for cutoff and expressing the del operator as V = V, + z _, it is possible to write

two separate eqtiations - one for the transverse part and another for the z component. The

transverse field behavior is modeled with the use of edge elements and the z-directed fields are

modeled using traditional node based elements. The particular form of the expression of eq.

(4.3) will depend on whether a TE or TM field will be considered to exist within the structure.

This dependence completely rests in the expression of the electric current density, ,l.

4.2.1 TM Fundamentals-an infinite line source

Following the work of Hill [5], the TM case uses an infinite line source located at

(Xo,Yo) of the form

3= _.Io_(X-Xo)8(y- yo). (4.4)

so that (4) can be written as

V, x(V, xY,) - k02er_, =0 (4.5)

V, . ( V,ez ) + k_ ere_ = -jkorlolor ( X - Xo ) 8 ( y - yo ) (4.6)

leading to the following weighted residual form:

II[(V, x_,)e(V, x _)-k_e_,e _]ds = 0 (4.7)

and

II[-(V,e, ).(V,T_ )+ k_6_e,T_ ]ds = -jkorloloT _ (x o, Yo ) (4.8)

Note that in obtaining eq. (4.8), the integration required to obtain the right-hand side is trivial.

The resulting linear system of equations is of the form A_--b. Note that for this system that

i ={E,} r and that Ex = 0 and Ey = 0.
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4.3 TM INFINITE LINE-SOURCE RESULTS

This section presents a TM analysis that will compute the shielding effectiveness of a box

with a single aperture. The 2D infinite line-source results are obtained by the rotation of the

tuner for 225 steps in 1.6 ° increments, thus providing a full mechanical rotation of the tuner.

The results represent the solution of the matrix equation corresponding to eq. (4.8) for each of

the tuner positions at each frequency of interest. Consider the geometry of Figure 4.2 depicting

the discretized structure to be analyzed with a typical result in Figure 4.3 for a frequency of 400

MHz. Note that the results of Figure 4.3 are logarithmic and emphasize the field structure rather

than the absolute field levels. Th_ close-up of the Box in Figure 4.4 demonstrates the field

structure in the "shielded" box. Note that at 400 MHz the 10 cm aperture is 0.133 wavelengths

long. Figures 4.5 and 4.6 depict similar results for a frequency of 600 MHz. Note that the field

structure for 600 MHz is significantly more complex and that the mode structure inside the box

Figure 4.2. Discretized geometry for Figure 4.1. Grid is

such that there are 10 samples per wavelength.

demonstrates the existence of the TM_ mode. This indicates that there is one resonance inside

the box between 400 MHz and 600 MHz, which actually occurs at 480.21 MHz.
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Figure 4.6. Close-up of PEC box with aperture at 600
MHz.
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4.4 SHIELDING EFFECTIVENESS FOR THE TM STRUCTURE

This section will explore replacement-shielding effectiveness where the fields are

simulated with and without the box present. This work follows closely the work of Park [6] who

performed a plane wave analysis of a two-dimensional TM box with single and multiple

apertures. Park also performed measurements that verified his computational results. This

section will duplicate Park's test configuration, but with the significant difference of applying a

reverberation chamber simulation. Measurements in NASA's medium size reverberation

chamber (Chamber B) are presented to further corroborate the simulation. The shielding

effectiveness (SE) simulation will explore the SE of a two-dimensional box that is 40 cm × 50

cm with a 10 cm aperture as depicted in Figure 4.1.

Simulations were performed at various frequencies with the shielding effectiveness

defined as

SE=20*log( E_°e°_ ) (4.9)

with the NoBox solution corresponding to the solution obtained with no box present and the Box

solution for the fields at the center of the box. Typical results are portrayed in Figures 4.7 and

4.8. Figure 4.7 shows a comparison of the z-component of the electric field for the shielded and

unshielded measurement. Note that these simulated results indicate roughly a 30 dB difference

between the Box and NoBox cases.

of SE in a reverberation chamber.

from the Iinearity of the sample

The results provide some interesting insight as to the nature

Note from Fig. 8 that the SE is normally distributed as seen

data on the normal probability plot and the subsequent

histogram. The mean value of the SE is 35.3 dB with a standard deviation of 10.51 dB. Park's

result is approximately 43 dB and is 7.7 dB greater than the more conservative mean obtained by

the simulation. The 7.7 dB difference is well within a standard deviation from the simulated

data. From Fig. 8 it can also be seen that the SE is less than 10 dB for tuner positions 25 and 71,

and is nearly zero for position 71. The variation in SE is not attributable to resonance conditions

since the first mode of the box is at 480.23 MHz. The fields in the aperture are varying

continuously in amplitude and structure as the tuner is stirring the fields. Although the simulated

frequency is below the cutoff of single mode operation in the box a statistical distribution of the

field is obtained inside due to what may be considered "source" stirring. This form of stirring is

distinct from frequency stirring [4] since the frequency in the simulation is fixed. The fields in
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the aperture have a statistical distribution governed by the characteristics of the simulation

reverberation chamber and provide an excitation to the smaller non-complex cavity. This

excitation drives the non-complex box in a manner consistent with large, complex reverberation

chambers. An important conclusion to the idea of source stirring is that internal stirring of the

non-complex box is not required.
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Figure 4.7. Magnitude of Ez for the shielded and unshielded cases at
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Figure 4.8. Shielding effectiveness for the Park [4] box at 400 MHz.
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4.4.1 Measurements

This section will highlight the measurement of shielding effectiveness in the

reverberation chamber. These measurements were performed on a rectangular box (40 cm x 50

cm x 20 cm) with an aperture that is 10 cm x 2 cm as depicted in Figure 4.9.

Figure 4.9. Box with aperture for shielding
measurements in the reverberation chamber.

effectiveness

For this measurement an HP 8720C vector network analyzer (VNA) was used to measure the

transmission characteristics (S21) in the chamber. The VNA was calibrated using "Response and

Isolation". The measurement consists of a log-periodic antenna (transmit) to a probe (receive)

located in the box at three positions: top, side, and rear wall for shielded measurements and then

a measurement without the box for an unshielded measurement. The SE can be computed by a

slight variation ofeq. (4.9).

{" _ NoBox "_

SE = 20" log _21LTox) (4.10)

for each wall position. A typical result at 400 MHz is depicted in Figure 4.10.

the SE reported by Park [6] and the simulated and measured results are presented in Figure 4.11.

The Park data overestimates the SE for all but 500 MHz and is 28 dB higher than the simulated

finite element model at 100 MHz. The simulated and measured results are nearly identical at

300 and 400 MHz, but diverge at the low and higher frequencies. The simulated results are 17

A comparison of
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dB higher than the measured results at 100 MHz, and are 5 dB lower at 600 MHz.

analysis would readily discern the resonance observed in the measured data at 450 MHz.
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Figure 4.10. lS:_l at 400 MHz for the shielded and unshielded configurations.
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4.5 CONCLUSIONS
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A two-dimensional finite element model for transverse magnetic (TM) solution inside a

reverberation chamber has been presented. Tuner effects on the modal structure and the

shielding effectiveness in a reverberating environment has been examined. The reverberating

environment provides additional insight into the shielding properties in a statistical sense. The

shielding effectiveness of the TM structure for aperture coupling for several frequencies in a

simulated reverberation environment was presented and compared to published and measured

results. These results point to the development of a statistical model of shielding effectiveness.

This model will form a critical component to the overall mechanism of upset prediction in digital

systems.

An example of an application of the notion of a probabilistic model for shielding

effectiveness a problem of determining the probability of exceeding a particular voltage for a

given input voltage. Consider the problem of determining the probability of having an electric

field intensity of 1 V/m anywhere inside a cavity exposed at 1000 V/m. The shielding

effectiveness was characterized earlier as a Normal random variable with mean of 35.3 dB and

standard deviation of 10.5 dB at a frequency of 400 MHz. The probability of exceeding 1V/m

for a 1000 V/m exposure corresponds to calculating the probability of having a shielding

-35.3] = 0 9906. This calculationeffectiveness less than 60 dB which is FsE(60)=I- Q 10.5 ) "

predicts a 99.06% probability of exceeding 1V/m for an exposure of 1000 V/m. If the threat

level is reduced to 100 V/m the probability of exceeding 1 V/m reduces to 67.36 %.
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